加湿电流极小如何清洗空调室外机
石家庄2023-04-21 13:19:33
9 次浏览小百姓04032300273
联系人:张金良
机房精密空调 机房温湿度 机房UPS
对象:对机房精密空调运行状态进行。
实现:精密空调提供RS232/485通讯接口。按实际情况划分区域,将一个区域内的精密空调通过智能接口接至嵌入式主机,嵌入式主机通过实时不间断的轮询采集将信息传送给平台进行显示、报警。
性能:监测空调机运行状态,用图形和颜色变化来显示空调的工作情况,故障时进行报警。能够实现空调的制冷器运行状态、压缩机高压故障、过滤网阻塞等的监测与报警。可以通过本系统在远端室内控制空调机的启、停,及改变温度与湿度的设定值。此外,能够实时显示并保存各空调通讯协议所提供的能远程监测的运行参数、各部件状态及报警情况。
内容:
模拟量:回风温度、回风湿度、回风温度上限、回风湿度上限、回风温度下限、回风湿度下限、温度设定值、湿度设定值、压缩机运行时间、乙二醇运行时间、加热百分比、制冷百分比、温湿度变化曲线图;
数字量:空调运行状态、加热器运行状态、制冷器运行状态、器运行状态、加湿器运行状态、压缩机高压报警、压缩机低压报警、空调漏水报警、温湿度过高报警、温湿度过低报警、加湿器故障报警、主风扇过载报警、加湿器缺水报警、滤网堵塞报警等。
控制量:空调的远程开机、关机。空调的温、湿度的远程设定。
空调的所有监测与控制量的具体情况可依据空调厂家提供的通讯协议略有变化。
温湿度
对象:对机房内各个区域的温度和相对湿度进行监测。
实现:在机房内对机房温湿度进行监测。温湿度传感器输出数据信息,通过RS485通讯总线接入连接到嵌入式数据采集终端。嵌入式数据采集终端通过总线与温湿度传感器进行通信,采集到温湿度运行数据及状态信息,经过计算处理后的数据发布到对外数据接口,集中平台或客户端直接读取嵌入式数据采集终端对外数据接口的数据,实现温湿度的在线实时。
性能:以电子地图方式实时显示并记录每个温湿度传感器所检测到的室内温度与湿度的数值,显示短时间段内的变化情况曲线图。并可设定每个温湿度传感器的温度与湿度的上限与下限值。当任意一个温湿度传感器检测到的数据超过设定的上限或下限时,主系统发出报警。
内容:由温湿度传感器的实时温度、湿度。
机房精密空调智能直接冷却优化技术
1、技术原理
机房智能直冷优化应用技术利用制冷剂自然相变循环原理,以温差的形式产生压差,驱动制冷剂工质的自然相变循环流动,实现室内外无动力热量交换。同时,采用机房能效管理软件及环境维持系统软件,实现按需供冷的自适应冷量调节及机柜级温度场控制。采用该技术的智能冷却终端,可显著降低机房原有制冷系统运行时的耗电量,实现节能。
2、关键技术
(1)、机房内外无动力热量交换技术
安装在机柜背部制冷终端内的液态制冷剂吸热后蒸发为气态,依靠重力作用,沿制冷剂导管自然流动至室外冷量分配单元,冷凝后变为液态,又自然回流至智冷终端内,依此循环,源源不断地将室内机柜产出的热量排放至室外,实现机房室内外的无动力热量交换。
(2)、按需供冷的自适应冷量调节技术
每台机柜内设备的发热量不同,制冷终端内制冷剂蒸发量不同,从而使冷却回流液带回的制冷量不同,通过机房能效管理软件,可自动调节智冷终端及室外冷源的制冷量,实现按需供冷。
(3)、机柜级温度场控制技术
传统机房制冷是利用空调同时面向多个机柜组制冷,从而导致离空调通风口距离不同,制冷效果不同。本技术直接在每个机柜背部安装智冷终端,立面向机柜热源均匀制冷,解决机房温度环境局部过热的问题。
3、工艺流程
机房智能直冷优化应用技术运行流程如图1所示。机房内(图右侧)每个机柜排出的热风,使安装在其背部的智能冷却终端内的制冷剂工质受热后发生相变,由液态蒸发为气态,依靠压差沿制冷剂气体管路将热量带到室外系统(图左侧)的冷量分配单元,在冷量分配单元内与室外冷源进行热交换;制冷剂工质受冷后由气态冷凝为液态,依靠自身重力沿制冷剂液体管路回流到智能冷却终端内,从而完成一个完整的热力循环,机房内产生的热量依此源源不断传递到室外。当室外湿球温度低于14℃时,系统自动启用冷却塔,不启用冷水机组压缩机,充分利用自然冷源,达到节能的目的。
艾默生精密空调的压缩机、蒸发器、风机、冷凝器、膨胀阀、加热器、电控等关键元器件均采用工业等级高、可靠性好的材料,确保连续稳定运行。
产品按照运行时间长的寿命设计;每一件产品均经过严格的出厂试验;智能化的人机交互界面:全中文大屏幕LCD背光显示,易操作的人性化界面,的微电脑控制系统;多级密码保护,防止误操作;具备运行状态智能显示、故障诊断功能;较好的智能化控制技术,记录各主要部件的运行时间;设置参数自动保护,即使停电后也可以保存运行参数和告警记录;能储存几十条历史告警信息。
加湿系统的巡检及维护
1)由于各个地方的空气环境不同,对加湿器的使用和影响也不一样,但我们在日常的维护工作中同样要做的事情是观察加上罐内是否有沉淀物质,如有就要及时冲洗,因为现在空调的加湿罐一般都是电极式的,如沉淀物过多而又不及时冲洗的话,就容易在电极上结垢从而影响加湿罐的使用寿命。当然现在有些加湿罐的电极是可以更换的。
2)检查上水和排水电磁阀的工作情况是否正常。在加湿系统工作的过程中,有一种情况经常出现,但又不容易判断,即在空调系统正常工作的时候,由于某种原因出现了一段时间的停水,后又恢复供水,在恢复供水后加湿罐不能够正常上水,出现这种现象的原因有多种,并且在大多数空调器的控制系统中直接对加湿系统复位通常是不能够解决问题的;根据我们多年来的维护来看,引起这种现象的主要原因是停水后的空气进到进水电磁阀前端,对进水电磁阀的正常开启造成了一定的影响,解决这种现象有两种比较有用的办法,一是卸开进水口,排掉空气,二是关掉加湿系统的电源,重新给电磁阀上电也基本上能够解决这类问题。
3)检查加湿罐排水管道是否畅通,以便在需要排水和对加湿罐进行维修时顺利进行。
4)检查蒸汽管道是否畅通,保证加湿系统的水蒸汽能够正常为计算机设备加湿。
5)检查漏水探测器是否正常,这对加湿系统来说是比较重要的一环,因为排水管道如果不畅通的话就容易形成出现漏水的情况,如漏水探测器不正常的话,就易出现事故。当然,对一般的空调系统而言,漏水探测器是选件,如空调系统未配有漏水探测器,那么我们更要注意监测排水管道是否畅通,同时也要做好机房防水墙的维护工作。
6、空气循环系统的巡回检查及维护
对空气循环系统我们主要是考虑空调系统的过滤器、风机、隔风栅及到计算机设备的风道等因素。因此我们在日常维护工作中要做好以下的一些工作:
1)计算机机房的设备经常有设备移动的现象,而设备的移动一般又不是由空调设备的维护人员去完成,因此我们在设备移动后应及时检查机房内的气流状况,看是否有气流短路的现象发生,同时在新设备的位置是否存在送风阻力过大的情况。如有上述现象应及时调整,如果实在调整不过来,应建议设备移到新的合适的位置。
2)检查空调过滤器是否干净,如脏了就应及时更换或清洗。
3)检查风机的运行状况:主要是检查风机各部件的紧固情况及平衡,检查轴承、皮带、共振等情况;对风机的检查应该特别仔细,因为蒸发器的热交换过程主要是由在风机的作用下使快速流动的气流经过低温的蒸发器盘管来完成的,从而使空调达到制冷的效果,所以风机的是否正常运行是空调系统是否正常运行的后体现;对风机而言当然重要的就是电机了,因此我们在日常维护中首先就应查看其皮带的状况、主从动轮是否在同一面上等;皮带调整的松紧程度要合适,太松容易打滑,太紧对皮带的磨损太快,皮带的松紧跟外部对静压得需求也有比较大的关系,当然这种调整是在空调系统控制的范围之内进行的;现在部分比较的空调系统采用了一体化的风机,就解决了皮带调整的问题。
4)测量电机运转电流,看是否在规定的范围内,根据测得的参数也能够判断电机是否是正常运转。
5)测量温、湿度值,与面板上显示得值进行比较,如有较大的误差,应进行温度、湿度的校正,如误差过大应分析原因。出现这种情况从我们的维和经验来看有两种原因:一是控制板出现故障,二是温度、湿度探头出现故障需要更换。
6)检查隔风栅的关闭情况是针对已经停机的空调而言的,这也是我们在日常维护工作中比较容易遗漏的一个环节,但也是一个比较重要的环节,因为一台空调停止运行,如果隔风栅未关闭其温度、湿度探头检测到的是其它空调的出口的温度和湿度,在空调下一次开启时控制系统就会根据其先前检测到的参数而对空调系统的运行情况做出控制,这时空调控制系统就会对压缩机、加湿、除湿系统地运行情况做出错误的指令。现在大多数空调设计时都没有考虑这种状况对空调系统的影响,因为这种影响的时间较短,在较短的时间内系统会根据新的信息达到正常的运行状况,所以没有设计隔风栅,这种影响虽然较小,但我们认为在要求很高的计算机机房中我们好不要让系统出现一段时间的错误运行,因此我们可以为空调系统人为地增加隔风栅。
7)检查计算机及其它需要制冷的设备进风侧的风压是否正常,因为随着计算机设备的搬迁和增加,地板下面的线缆的增加有可能就影响空调系统的风压,从而造成计算机及其它设备跟前的静压不够,这就需要我们设备维护和管理人员对空调系统的风道做出相应的调整或增加空调设备。
以上为我们对计算机机房精密空调进行巡检和维护时做的基本工作,在其它机房中也许有所不一样,因为有些步骤需要根据设备的状况和型号而定,同时随着空调设备技术的提高,有些步骤也不需要人工去完成了。
计算机房
3.3 计算机房
3.3.1 按单位面积估算冷量:
中国 机房在单层建筑内 290~350w/m2 [250~300kcal/h·m2]
机房在多层建筑内 ********************kcal/h·m2]
前苏联450~565w/m2 [390~485kcal/h·m2]
美国350~405w/m2 [300~350kcal/h·m2]
日本407~525w/m2 [350~450kcal/h·m2]
备注:1、随着计算机集成电路、超大规模集成电路及芯片技术的发展,计算机体积越来越小,散热量也较以前大为降低,相应地估算指标也需要作一定的调整;但随着网络技术的发展,要求计算机的可靠性更高,运行速度更快,相应地散热量又有所增加,因此,冷量的估算应当结合实际情况综合考虑。
2、对于绝大多数机房(设备发热量一般),在无法准确计算机房内的设备发热量的情况下,在进行精密空调选型时可直接按照290~350w/m2即0.29-0.35KW/m2(等同于250~300kcal/h·m2)的标准进行设计,而为了安全起见,大多数情况下都按照0.35KW/m2(即300kcal/h·m2)的标准进行设计(2014年该值已经上升到1KVA/M2)。
3.3.2 按计算机房内设备的散热量估算冷量:
在国外有的公司往往以整套计算机设备安装电功率进行计算,在国内还应乘以一定值的系数
① 主机设备的散热量 Q=1000NK
Q──散热量 w
N──主机设备安装功率 kw
K──总系数,国产设备取0.4~0.5;进口设备取0.6~0.8
② 外部设备的散热量 Q=1000NK
Q──散热量 w
N──外部设备安装功率 kw
K──总系数,国产设备取0.2~0.3;进口设备取0.5
3.3.3 照明灯具散热量 Q=1000n1n2n3N
3.3.4 人体散热量和散湿量 Q=nq W=nw
备注:
1. 由于实际选型时往往按空调机的系列型号规格向上取整,这样就留有一定的安全系数,因此3,4项的散热量可以忽略不计;
2. 其它电讯机房的选型可参照计算机房的参数进行。
系统新风量
3.4 机房精密空调系统新风量
按下述三项中取其中的大一项:
3.4.1 按机房人员取40m3/h·p
3.4.2 维持机房室内正压所需的风量
3.4.3 取机房空调总风量的5%(出于能源节约,为了降低新风系统耗能,2014年规范及行业实施均已无此条下限限制。)
地板
联系电话:15613124145